Thứ hai, 09/06/2025 | 20:51 GMT+7
AN OPTIMIZED EXTREME LEARNING MACHINE USING ARTIFICIAL CHEMICAL REACTION OPTIMIZATION ALGORITHM ABSTRACT Extreme Learning Machine (ELM) is a simple learning algorithm for singlehidden-layer feed-forward neural network. The learning speed of ELM can be thousands of times faster than back-propagation algorithm, while obtaining better generalization performance. However, ELM may need high number of hidden neurons and lead to ill-condition problem due to the random determination of the input weights and hidden biases. In order to surmount the weakness of ELM, this paper proposes an optimization scheme for ELM based on artificial chemical reaction optimization algorithm (ACROA). By using ACROA to optimize the hidden biases and input weights according to both Root mean squared error and the Norm of output weights, the classification performance of ELM will be improved. The experimental result on several real benchmark problems demonstrates that the proposed method can attain higher classification accuracy than traditional ELM and other evolutionary ELMs. Keywords: Extreme learning machine (ELM), artificial chemical reaction optimization algorithm (ACROA), single-hidden-layer feed-forward neural network (SLFN); learning algorithm; classification. |
Đối với ngành da giày, các hiệp định thương mại tự do không chỉ mang lại cơ hội gia tăng xuất khẩu mà còn thúc đẩy sự đổi mới, chuyển đổi chuỗi cung ứng và cải thiện chất lượng sản phẩm để đáp ứng các tiêu chuẩn quốc tế.
04/06/2025